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ABSTRACT  
For effective early-stage decision making, engineers need to explore the design space via assessing a large 
number of possible solutions. Traditionally, for ship design, early-stage exploration is based on low fidelity 
analysis. However, for novel designs, high fidelity analysis is required early on in the design process for the 
assessment of the different solutions. Low fidelity tools are not able to capture the complex physics often 
associated with the performance of novel designs. For such cases, multi-fidelity models have been proven 
beneficial. The paper investigates how compositional kernel search applied to a framework based on the 
linear autoregressive scheme (AR1) of multi-fidelity Gaussian Processes can facilitate the analysis of 
complex engineering systems, such as naval vessels. The method has been applied to benchmark functions, 
including the Forrester and the ND Rosenbrock functions, and also to a simplified design problem of a 
cantilevered beam. The results show improved predictions in terms of higher accuracy and reduced 
uncertainty compared to using less high fidelity analysis data. The method shows promise in introducing 
high fidelity analysis earlier on in the design process, and in addressing challenging early-stage 
design applications. 

1.0 INTRODUCTION 

Early-stage design of complex systems, such as naval vessels, is considered by many to be one of the most 
critical design phases because that is when many of the major design decisions are made, and as a 
consequence, most of the costs (approximately 70% of the total lifecycle cost according to Dierolf and 
Richter, 1989) are committed. One of the major challenges is that engineers need to make these big decisions 
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with limited knowledge of the design, since knowledge is gradually gained throughout the process (Mavris et 
al., 1998). Knowledge regarding the performance of the design is important to making informed design 
decisions (Seyffert, 2018) and in turn, better designs. To assess the performance of each design, knowledge 
is generated via analysis methods and tools. Traditionally, the fidelity of these tools gradually increases 
throughout the design process (Figure 1). Early-stage design exploration is based on low fidelity (LF) tools 
such as simplified physical models, data from reference designs, empirical and semi-empirical methods. LF 
tools are suitable for a broad exploration of the design space but lack in accuracy. Conversely, high fidelity 
(HF) tools such as experiments and computationally expensive numerical simulations are used later on the 
process when the design space is limited to few promising solutions. HF tools can capture accurately the 
underlying physics of the problem and thus, these tools offer accurate predictions. 

 

Figure 1: The stages of the design process (Mavris et al.1998). 

However, there are cases that this approach is not sufficient. For example, the hydro-structural assessment of a 
tumblehome ship hull requires using HF tools (e.g., Kim, Park and Kim, 2022), whereas LF tools are sufficient 
for traditional hull forms (e.g., Nikolopoulos and Boulougouris, 2019). Typically, these cases connect with 
designs incorporating novel features such as the tumblehome hull of the US Navy DDG1000 frigate designed 
to improve stealth by minimizing the cross radar section. LF tools are not effective for these cases due to the 
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complex physics that needs to be captured. On the other hand, HF tools are able to capture the physics of 
complex problems but are computationally expensive. As a consequence, designers can only assess a limited 
number of designs with HF tools. However, for effective early-stage decision making, designers need to 
explore the design space requiring a large number of designs to be assessed. This is a challenge which can be 
addressed by introducing multi-fidelity (MF) models in early-stage design applications. 

MF models are a current state-of-the-art for early-stage design in various engineering fields such as 
aerospace (e.g., Di Fiore et al., 2021), automotive (e.g., Bertram, Othmer and Zimmermann, 2018) and ship 
design (e.g., Bonfiglio, Perdikaris, Vernengo et al., 2018). There are different definitions for MFMs in 
literature. According to Beran et al. (2020),  

analysis or design of a system is considered MF when there is synergistic use of different 
mathematical descriptions (i.e., different physics typically represented by different governing 
equations, boundary conditions, or parametric attributions) in the analysis or design procedure. 

The HF model ensures that the relevant physics is taken into account, whereas the LF models achieve 
computational speed-ups.  

There are three main ways to combine models for building MF models, known as model management 
strategies (Peherstorfer, Willcox and Gunzburger, 2018): adaptation, fusion, and filtering. Various MF 
schemes have been proposed for different methods using these model management strategies. For example, 
MF models based on Gaussian Processes (GPs) (e.g., Bonfiglio, Perdikaris, Vernengo et al., 2018), Monte 
Carlo (MC) (e.g., Ng and Willcox, 2014), and Artificial Neural Networks (ANNs) (e.g., Zhang et al., 2021) 
are widely applied for design analysis and optimization problems. GPs are strong and well-understood 
mathematical methods that provide robust predictions including the underlying uncertainty associated with 
the predictions. Uncertainty quantification is important for decision-making problems (Bickel and Bratvold, 
2008), such as early-stage design. For vehicle design applications requiring computationally expensive 
analysis, GPs offer a great advantage since they provide good predictions based on limited training data. 
Linear (see Kennedy and O’Hagan, 2000) and nonlinear (see Damianou and Lawrence, 2012; Perdikaris et 
al, 2017) MF schemes have been proposed for the GPs. For vehicle design, the linear scheme has been 
successfully applied to different problems such as the shape optimization of super-cavitating hydrofoils 
(Bonfiglio, Perdikaris, Brizzolara, and Karniadakis 2018). The present paper focuses on the linear scheme 
autoregressive model (AR1) proposed by (Kennedy and O’Hagan, 2000). 

For design applications, one the main challenges is that a larger HF dataset is required to achieve accurate 
predictions for more complex and higher dimensional problems. Building a larger HF dataset is a challenge 
because each data point is the outcome of computationally expensive analysis or even experiments. Thus, 
there is limited (computational) budget available for the acquisition of the HF dataset. To address this 
challenge the authors propose the application of compositional kernels, originally proposed by Duvenaud et 
al., (2013), to achieve more accurate predictions with less HF data. To the best of the authors knowledge, 
compositional kernels have not been applied to MF schemes. Focusing on the two-level multi-fidelity case, 
we propose a two-stage approach to build compositional kernels for the MF-GP framework. The first stage is 
to build a compositional kernel for the LF model based solely on the LF analysis data, and the second stage 
is to build a compositional kernel for the HF model based on the MF analysis data. The main idea of the 
proposed method is to facilitate design analysis and optimization via the discovery of the underlying 
structure of the HF model. In this way, more accurate predictions can be achieved by using less HF data and 
thus, the required computational cost can be reduced. The proposed method is applied to benchmark 
functions and to a simplified design problem.  

The paper organizes as follows. Section 2.0 provides a detailed description of the proposed method. 
Section 3.0 illustrates the case studies and shows the results. Section 4.0 discusses the conclusions. 
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2.0 METHODS 

2.1 Proposed Method 
The proposed method has two main building blocks: the compositional kernels and the multi-fidelity GPs. 
Figure 2 shows the way these building blocks are combined. In this section, a detailed description of the 
proposed method and its main building blocks is given. 

The authors propose the application of compositional kernels to improve the predictions of the linear 
autoregressive scheme (AR1) scheme. The approach consists of two-steps; the first step is to build a 
compositional kernel for the  based on a single fidelity GP model (mathematical formulation in 
Section 2.2.1) for the low fidelity data, and the second step is to build a compositional kernel for the 

 based on the MF GP model (mathematical formulation in Section 2.2.2) using both the low 
and the high fidelity data. Searching the structure of the compositional kernels is a discrete optimization 
problem. Compositional kernels consisting of a small number of basis kernels can be constructed via discrete 
exhaustive search. Conversely, compositional kernels consisting of a large number of basis kernels require 
the use of optimization algorithms for discrete problems such as genetic algorithms. The layers of the 
compositional kernel, or the number of basis kernels, is determined by the complexity of the underlying 
structure of the physical problem. The Bayesian Information Criterion (BIC) [Equation (16)] was used as the 
search criterion.  

 

Figure 2: Flowchart of the proposed method. 
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2.2 Multi-Fidelity Gaussian Processes 

2.2.1 Gaussian Processes 

The Gaussian process (GP) regression is used to build approximations of real world processes. A Gaussian 
process is ‘a collection of random variables, any finite number of which have a joint Gaussian distribution, 
and it is fully characterized by its mean and covariance function’ (Rasmussen and Williams, 2006). The GP 
of a real world process f(x) is fully defined by its mean m(x) and covariance k(x,x’) function as follows 
(Rasmussen and Williams, 2006):  

 

(1) 

 

(2) 

Therefore, 

 (3) 

For engineering problems, the available analysis or experimental data are considered as noisy observations 
of the underlying function. The available data have the following form: 

,  (4) 

where y represents our observations, f is the function to be approximated, and  is the error term. The prior 
distribution of the observed data  and the test data  is the following: 

 
(5 

where  the function values evaluated at . The GP belongs to the family of Bayesian methods. For 
Bayesian methods, a critical element of the analysis is the prior which encodes our prior knowledge or 
assumptions regarding the unknown function f. A common practice is to assign the prior a zero mean and a 
kernel function  where  is a vector of hyperparameters. Based on the kernel function, the 
covariance matrix is constructed as follows: . According to Bayesian learning, the prior 
distribution is updated by taking into account the observed data. More specifically, the prior distribution is 
conditioned on the observed data to get the posterior distribution 

 

(6) 

  (7) 

 

(8) 

where , , and A commonly applied method to optimize the 
hyperparameters of the kernel function is to maximize the marginal log-likelihood defined as:  

 
(9 



 

Compositional Kernels to Facilitate Multi-Fidelity 
Design Analysis: Applications for Early-Stage Design 

P7 - 6 STO-MP-AVT-354 

 

2.2.2 Multi-Fidelity Gaussian Processes 

In this section, the AR1 scheme for multi-fidelity GPs (MF-GPs) proposed by Kennedy & O’Hagan (2000)is 
shown. The method assumes that there is a linear dependency between the different fidelities. More 
specifically, the high- and low-fidelity functions are associated as follows: 

 (10 

where the t=1,…,s is the increasing fidelity level,  and  are GPs,  is a scaling parameter, and 
 is an additive term. The method assumes that: 

, . (11 

The aforementioned property ensures that we cannot learn more about  from any other  given 
 For the two-level multi-fidelity problem, we have observations  

, . (12) 

, . (13) 

The underlying functions are associated via Equation (10) as follows 

 (14 

In addition,  and  are considered two independent 
GPs. It is a common assumption to consider GPs with a zero mean prior, which does not restrict the posterior 
mean to be zero (Rasmussen and Williams, 2006). Based on the autoregressive assumption, the low and high 
fidelity observations are jointly distributed as follows: 

 
(15 

The covariance matrix of Equation (15) is used to calculate the posterior distribution [Equations (6)-(8)]. For 
the training of the model, the hyperparameters are optimized based on the maximization of the marginal log 
likelihood [Equation (9)].  

2.3 Compositional Kernels 
The most critical element of the GP is the covariance matrix, or the kernel, because it encodes our prior 
assumptions regarding the prediction. The requirements for a kernel to be valid is to be: (1) symmetric and 
(2) positive semidefinite. Previous research has developed basis functions which can be used to build valid 
covariance matrices. The kernel expresses the similarity between the data points (Rasmussen and Williams, 
2006). For example, the periodic kernel capture successfully functions which repeat themselves exactly. 
Duvenaud et al., (2013) developed compositional kernels defined as kernels constructed by adding or 
multiplying a small number of basis kernels. The idea of the method was to decompose the function to be 
learned into interpretable components. The composition of the kernels is based on a search method aiming to 
minimize the Bayesian information criterion (BIC) metric defined as: 

 (16 
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where n is the number of training data, k are the number of hyperparameters, and L is the maximized 
likelihood value. One of the main components of BIC is the likelihood function. In addition, it introduces a 
penalty term based on the model’s parameters to avoid complexity and overfitting. 

3.0 RESULTS 

In this section, the results of three case studies are presented, including: the assessment of the benchmark 
Forrester and ND Rosenbrock functions, and the structural assessment of a simplified cantilever beam 
problem. The case studies of the analytical functions have L1 (quantities of interest (QoIs) are analytical 
functions, negligible computational cost) level of complexity and the case study of the cantilever beam has 
L2 (QoIs are computed via solving ODEs or PDEs, moderate computational cost) level of complexity as 
defined by AVT-331 (Beran et al. 2020). For the shown case studies, the python packages, Emukit (Paleyes 
et al., 2021) and GPy (GPy, 2012), were used. 

3.1 Forrester Function (1D) 
The Forrester function is a one-dimensional test function proposed by Forrester, Sbester and Keane (2007). 
This function has been proposed as a benchmark function for MF optimization methods by Mainini et al., 
(2022) and has been widely applied to demonstrate frameworks based on MF-GPs (i.e., Kontogiannis and 
Savill, 2020). The two-fidelity function is described by Equations (17) and (18): 

 (17 

 (18 

The Forester function is used to visualize the idea of how compositional kernels can improve the predictions 
of the MF model. In this case we used 5 HF and 25 LF training points. In Figure 3, the prediction of the 
function by using the reference and the proposed model can be seen. The reference model implements the 
AR1 scheme of the MF-GPs, as described in Section 2.2.2, with the squared exponential (SE) kernel. The SE 
kernel is widely applied in relevant literature (e.g., Bonfiglio, Perdikaris, Vernengo et al., 2018). By 
capturing the structure of the underlying function [Figure 3(c) and Figure 3(d)] via using compositional 
kernels, the model is able to make more accurate predictions. In this case, the optimization of the 
compositional kernels’ structure was extended up to combining two basis kernels. The SE kernel was used as 

. For the , the linear kernel was multiplied by the matern 3/2. For further information on the 
mathematical formulation of the different kernels, the reader is referred to (Rasmussen and Williams, 2006). 

3.2 ND Rosenbrock Function (ND) 
The second case is the ND Rosenbrock function, which has been proposed as a benchmark function for 
higher dimensional MF optimization problems by Mainini et al., (2022). The two-fidelity function is 
described by the Equations (19) and (20), and visualized in Figure 4: 

 

(19 

 
(20 
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(a) Sampling the posterior distribution 
of the reference model 

(b) Prediction reference model 

  

(c) Sampling the posterior distribution 
of the proposed model 

(d) Prediction proposed model 

Figure 3: Sampling the posterior distribution for the Forester function. 

 

Figure 4: 2D Rosenbrock function. 

Design optimization problems are multi-dimensional. This function offers the opportunity to better simulate 
the design problem since its dimensionality can be increase. To assess the performance and robustness of the 
proposed method, two case studies were performed. The first investigates the accuracy of the method’s 
predictions while changing the number of the HF training points. The second case study investigates the 
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accuracy of the method’s predictions while increasing the dimensionality of the function. Both case studies 
closely relate to the challenge that a larger HF dataset is required to achieve accurate predictions for more 
complex and higher dimensional design problems. 

3.2.1 Study on Increasing the Number of the HF Data 

For this case study, we assumed that N=2, used 70 LF points, and increased the number of HF points from 
10 to 50. The sampling method was Latin Hypercube Sampling (LHS). The analysis was performed on 
17 different training sets. Two different metrics, the coefficient of determination R2 and the normalized root 
mean squared error (RMSE), were computed to assess the quality of the prediction. The results of the 
different models are compared by calculating the improvement based on the normalized RMSE. The results 
are summarised in Table 1, and the calculated improvement is shown in Table 2. In addition Figure 5(a)-
Figure 5(b) show how the predictions fit the HF function in two cross sections ( , ) 
of the domain. The results showed significant improvement for limited HF data. 

Table 1: Results 2D Rosenbrock function. 

DoE GP HF R2 GP HF 
RMSE 

Reference 
model R2 

Reference 
model 
RMSE 

Proposed 
model R2 

Proposed 
model RMSE 

 mean (std) mean (std) mean (std) mean (std) mean (std) mean (std) 

(10,70) -3.0203E-02 

(2.2350E-01) 

2.2815E-01 

(2.7447E-01) 

4.1191E-01 

(8.3273E-01) 

9.8460E-02 

(8.3860E-02) 

9.9367E-01 

(4.9214E-03) 

1.2885E-02 

(3.7570E-03) 

(20,70) 2.5570E-01 

(4.3959E-01) 

1.8084E-01 

(7.3824E-02) 

9.4046E-01 

(1.3028E-01) 

2.7634E-02 

(3.0494E-02) 

9.9550E-01 

(4.2670E-03) 

1.0276E-02 

(4.7369E-03) 

(30,70) 7.6553E-01 

(3.7365E-01) 

7.3497E-02 

(8.1344E-02) 

9.7203E-01 

(4.2800E-02) 

2.2934E-02 

(1.6418E-02) 

9.9265E-01 

(9.7394E-03) 

1.2330E-02 

(7.5569E-03) 

(40,70) 9.4037E-01 

(2.3021E-01) 

2.2625E-02 

(5.0445E-02) 

9.9359E-01 

(5.4596E-03) 

1.2484E-02 

(5.1453E-03) 

9.9394E-01 

(1.1012E-02) 

1.0271E-02 

(8.1770E-03) 

(50,70) 8.6489E-01 

(3.6932E-01) 

3.7230E-02 

(7.4430E-02) 

9.8949E-01 

(7.7966E-03) 

1.6056E-02 

(6.4166E-03) 

9.9526E-01 

(7.4690E-03) 

9.3859E-03 

(6.8252E-03) 

Table 2: Computed improvement for the 2D Rosenbrock function. 

DoE 
Improvement ref. 

model compared to 
GP HF 

Improvement prop. 
model compared to 

GP HF 

Improvement prop. 
model compared to the 

ref. model 

(10,70) 56.8% 94.4% 86.9% 

(20,70) 84.7% 94.3% 62.8% 

(30,70) 68.8% 83.2% 46.2% 

(40,70) 44.8% 54.6% 17.7% 

(50,70) 56.9% 74.8% 41.5% 
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3.2.2 Study on Increasing the Dimensions 

This case study assesses the proposed method as the problem dimensions increased. The dimensions of the 
ND Rosenbrock were varied from 2 to 10. For the analysis, we used 50 HF observations and 70 LF 
observations. The training sets were sampled via LHS. In order to assess the robustness of the method, the 
analysis was performed on 17 different training sets. The results are shown in Table 3 and Table 4.  

Table 3: Results ND Rosenbrock function. 

Dimension
s GP HF R2 GP HF 

RMSE 
Reference 
model R2 

Reference 
model 
RMSE 

Proposed 
model R2 

Proposed 
model RMSE 

 mean (std) mean (std) mean (std) mean (std) mean (std) mean (std) 

2 5.8304E-01 

(4.4563E-01) 

1.1344E-01 

(9.2215E-02) 

9.2676E-01 

(1.1984E-01) 

3.5022E-02 

(2.9269E-02) 

9.9629E-01 

(6.3662E-03) 

8.1115E-03 

(6.3137E-03) 

4 3.3938E-02 

(1.1383E-01) 

6.6610E-01 

(4.4552E-02) 

4.2990E-01 

(3.3225E-01) 

4.9264E-01 

(1.4253E-01) 

7.6025E-01 

(1.1122E-01) 

3.2396E-01 

(7.5234E-02) 

6 6.2616E-03 

(3.3051E-02) 

1.1283E+00 

(1.9389E-02) 

3.2985E-01 

(2.3779E-01) 

9.1182E-01 

(1.6550E-01) 

6.0034E-01 

(1.4977E-01) 

7.0232E-01 

(1.3746E-01) 

8 6.1005E-03 

(2.9700E-02) 

1.5798E+00 

(2.4308E-02) 

2.9246E-01 

(3.0442E-01) 

1.3109E+00 

(2.4208E-01) 

6.1580E-01 

(1.4393E-01) 

9.6372E-01 

(1.9037E-01) 

10 -9.4176E-04 

(8.8841E-04) 

2.0386E+00 

(9.0454E-04) 

2.4017E-01 

(1.8684E-01) 

1.7642E+00 

(2.0614E-01) 

5.1448E-01 

(1.5481E-01) 

1.4023E+00 

(2.2243E-01) 
  

Table 4: Computed improvement for the ND Rosenbrock function. 

Dimensions Improvement ref. 
model compared to 

GP HF 

Improvement 
prop. model 

compared to GP 
HF 

Improvement 
prop. model 

compared to the 
ref. model 

2 69.1% 92.8% 76.8% 

4 26.0% 51.4% 34.2% 

6 19.2% 37.8% 23.0% 

8 17.0% 39.0% 26.5% 

10 13.5% 31.2% 20.5% 
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(a) Prediction reference model. (b) Prediction proposed model. 

Figure 5: Cross section of the predicted posterior distribution at x1=1.1431 and x2=1.1431. 

3.2 Simplified Design Problem 
As a simplified design problem, a cantilever beam structural problem (Figure 6) was tested. The problem 
was retrieved from (Brevault, Balesdent and Hebbal, 2020). The problem is a two-fidelity problem, where 
the LF method is the analytical estimation of the maximal von Mises (VM) stress and the HF method is the 
numerical estimation of the maximal VM stress.  

  

 

(a) Schematic representation of 
the cantilever beam problem 

(b) Equivalent von Mises stresses 
calculated by Ansys software 

Figure 6: Cantilever beam structural problem. 

Regarding the analytical calculation of the VM stress, the shear force and the bending moment acting along 
the length of the beam subjected to a transverse force need to be taken into account. The maximal bending 
stress is calculated by: 



 

Compositional Kernels to Facilitate Multi-Fidelity 
Design Analysis: Applications for Early-Stage Design 

P7 - 12 STO-MP-AVT-354 

 

 
(21 

 (22 

where the bending moment, moment of inertia (  for square cross sections), applied 
force, and  beam’s length. The average shear force is calculated as follows: 

 
(23 

where the first moment of area, with respect to the neutral axis, that lies above the point of interest 
( ), and side of the square cross section. The maximal VM stress is calculated by Equation (24). 

 
(24 

For the numerical model, a hole was introduced on the basis of the cantilever beam. The dimensions of the 
hole were defined as a function of the beam’s main dimensions ( ). Steel was 
defined as the beam’s material with the following properties:  GPa, and . The 
structural problem was modelled as a 2D problem with  the independent variables. The problem domain 
was defined by  m and  m. The applied force was set to 950.0 kN. The results are 
summarised in Table 5 and Table 6. The results showed that the reference and the proposed model offer 
more accurate predictions than the GP based on the HF data (17.3% and 19.9% respectively). However, the 
accuracy of the three models gets similar to each other when increasing the number of HF data. 

Table 5: Results structural problem. 

DoE GP HF R2 GP HF 
RMSE 

Reference 
model R2 

Reference 
model 
RMSE 

Proposed 
model R2 

Proposed 
model RMSE 

 mean (std) mean (std) mean (std) mean (std) mean (std) mean (std) 

(5,60) 5.6891E-01 

(2.7050E-01) 

9.7890E-02 

(3.5613E-02) 

6.9703E-01 

(2.1436E-01) 

8.0970E-02 

(3.2709E-02) 

7.1597E-01 

(2.1306E-01) 

7.8376E-02 

(3.1727E-02) 

(10,60) 8.1878E-01 

(1.1246E-01) 

6.3344E-02 

(2.3429E-02) 

8.2822E-01 

(1.1481E-01) 

6.1307E-02 

(2.3777E-02) 

8.3341E-01 

(1.1553E-01) 

6.0092E-02 

(2.4131E-02) 

(20,60) 9.5018E-01 

(3.4122E-02) 

3.3951E-02 

(1.0074E-02) 

9.5117E-01 

(3.7931E-02) 

3.3336E-02 

(1.0858E-02) 

9.5186E-01 

(3.8218E-02) 

3.3022E-02 

(1.1012E-02) 
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Table 6: Computed improvement for the structural problem. 

DoE Improvement ref. 
model compared to 

GP HF 

Improvement 
prop. model 

compared to GP 
HF 

Improvement 
prop. model 

compared to the 
ref. model 

(5,60) 17.3% 19.9% 3.2% 

(10,60) 3.2% 5.1% 2.0% 

(20,60) 1.8% 2.7% 0.9% 

4.0 CONCLUSIONS AND DISCUSSION 

4.1 Recommendations for Further Research 
The proposed method aims to eventually facilitate design optimization. In the present paper, the case studies 
show the benefit associated with design analysis. Thus, the next step is to explore the potential of the method 
applied to design optimization. In addition, a two-level multi-fidelity setup was examined. Therefore, the 
applicability of compositional kernels to multi-fidelity problems with multiple LF models is a topic for future 
research. Finally, the method was tested to benchmark functions and a simplified design problem. 
Consequently, the potential benefit of the method when potential when applied to a realistically complex 
design problem should be explored.  

4.2 Conclusions 
Early-stage design of complex systems is challenging due to the lack of knowledge inherent to these 
systems. This paper proposed the integration of compositional kernels in a MF-GP framework to facilitate 
design analysis and optimization. We applied the method to analytical benchmark functions and a cantilever 
beam structural problem. The analytical functions include the Forrester function, and the ND Rosenbrock 
function. We used the ND Rosenbrock function to test the influence of the number of the HF data and the 
problem dimensions to the accuracy of the predictions. For the cantilever beam problem, the LF analysis data 
were derived from solving the analytical equations for the estimation of the maximal VM stress, whereas the 
HF analysis data was taken by solving a FEM model in Ansys. The results showed that the proposed model 
performed better than the reference model, especially in limited HF data regimes. In addition, the uncertainty 
bounds associated with the prediction decreased. The uncertainty reduction leads to more confidence on the 
model predictions and in turn, facilitates decision making. Although the method was not applied to a 
complex engineering problem, the overall results showed significant improvement in the prediction and 
reduction of the uncertainty associated with it. Therefore, the proposed method seems promising for 
facilitating design analysis to support decision making for early-stage design applications. 
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